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A simple model of the transfer of charge and ion evaporation in the meniscus of an ionic-liquid ion source
working in the purely ionic regime is proposed on the basis of order-of-magnitude estimates which show that,
in this regime, �i� the flow in the meniscus is dominated by the viscosity of the liquid and is affected very little
by the mass flux accompanying ion evaporation, and �ii� the effect of the space charge around the evaporating
surface is negligible and the evaporation current is controlled by the finite electrical conductivity of the liquid.
The model predicts that a stationary meniscus of a very polar liquid undergoing ion evaporation is nearly
hydrostatic and can exist only below a certain value of the applied electric field, at which the meniscus attains
its maximum elongation but stays smooth. The electric current vs applied electric field characteristic displays
a frozen regime of negligible ion evaporation at low fields and a conduction-controlled regime at higher fields,
with a sharp transition between the two regimes owing to the high sensitivity of the ion evaporation rate to the
electric field. A simplified treatment of the flow in the capillary or liquid layer through which liquid is delivered
to the meniscus shows that the size of the meniscus decreases and the maximum attainable current increases
when the feeding pressure is decreased, and that appropriate combinations of feeding pressure and pressure
drop may lead to high maximum currents.
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I. INTRODUCTION

Liquid metals and molten or dissolved salts may undergo
ion evaporation from their surfaces in the presence of a high
electric field. This phenomenon is at the base of the genera-
tion of ion beams from ion sources of these materials. Liquid
metal ion sources �LMISs� are the most extensively used and
studied of these sources, with applications ranging from mi-
crofabrication and analytical instrumentation �1� to electric
propulsion �2�. In the most common configuration �1,3�, the
liquid metal covers the roughened surface of a thin metallic
needle held in a vacuum, and flows by capillary action to-
ward the electrochemically sharpened tip of the needle,
where a small meniscus is formed. A high voltage is applied
between the needle and a neighboring extractor electrode
shaped as a plane perpendicular to the needle with an orifice
in front of it. The electric field is intensified by the needle,
leading to electric stresses on the surface of the liquid that
strain the meniscus and further intensify the field. Ion evapo-
ration occurs in a region of a few nanometers around the tip
of the meniscus, where the electric field is of the order of 10
V/nm. The space charge due to the evaporated ions plays an
important role in this region, limiting the electric field on the
surface and the evaporation rate, and causing the meniscus to
develop a characteristic protrusion.

Ion sources of nonmetallic liquids, with electrical conduc-
tivities much smaller than those of metals, are a more recent
development that originated in the electrospray technique. A
review of this technique can be found in Ref. �4�. In the
simplest configuration, the liquid to be electrosprayed forms
a meniscus at the end of a capillary through which it is fed.
The meniscus is electrically stressed much as described
above for a LMIS until it evolves into a conical shape �a
Taylor cone� whose tip ejects a narrow jet that eventually
breaks into a spray of monodisperse drops. Owing to the
moderate conductivity of the liquid, the surface of the jet is

not an equipotential surface, and the electric shear due to the
action of the component of the electric field tangent to the
surface on the electric charge that the field itself accumulates
at the surface strains the jet and generally confers stability on
it. The diameter of the jet �and the size of the drops� de-
creases, and the maximum electric field on the surface of the
liquid increases, when the flow rate of the liquid fed into the
meniscus decreases or the electrical conductivity of the liq-
uid increases. The diameter of the jet can be controlled and
reduced down to about 10 nm by acting on these parameters
�5�, which makes the electrospray useful as a source of drops
for a variety of applications, especially in mass spectrometry
as a nondestructive way to obtain intact macromolecules �6�,
and also as a colloid thruster for electric propulsion �7–10�,
with a specific impulse that increases as the mass of the
charged drops decreases.

Many electrolytic solutions and ionic liquids �which are
molten salts at ambient temperature� begin to undergo ion
evaporation around the tip of the electrospray meniscus
when the maximum electric field reaches values in the range
of 1 V/nm. Positive or negative ions can be obtained by this
means with a wide variety of chemical compositions and
mass-to-charge ratios, which are key parameters determining
the properties and breadth of applications of the different ion
beams. For example, a beam of ions with mass-to-charge
ratio well above the 200 daltons attainable with LMISs
would decrease the space charge limitations that oppose
sharp focusing, and thus would allow intense fluxes of ions
for localized erosion or deposition; ions of increased mass
are of interest for electric propulsion, to reduce the energy
consumed per unit thrust; and ions of suitable chemical com-
position could allow a combination of physical erosion with
chemical attack in applications such as etching.

In most of the work carried out with the capillary type of
source, ions coexist with charged drops, and the fraction of
ions increases when the conductivity of the liquid is in-
creased or its flow rate is decreased �10,11�. Exceptions
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where a purely ionic regime �ions without drops� has been
reported are the work of Perel et al. �12� with concentrated
sulfuric acid solutions and the work of Romero-Sanz et al.
�13,14� with the ionic liquid l-ethyl-3-methyl imidazolium
tetrafluoroborate �EMI-BF4�. More recently, Lozano and
Martínez-Sánchez �15,16� adapted the externally wetted
needle configuration of LMISs to ionic-liquid ion sources
�ILISs� and showed that the purely ionic regime can be
achieved with many other ionic liquids in these new sources,
with narrow beam energy distributions and low energy defi-
cits comparable to those of LMISs; see also Refs. �17,18� for
extensions to very-large-mass ions and ionic liquids of mod-
erate surface tension and electrical conductivity. Compari-
sons of capillary and externally wetted needle configurations,
and details of the fabrication of emitters for the latter type of
source, are given by Lozano and Martínez-Sánchez �15�.

The continuous extraction of ions of a given polarity �an-
ions or cations� from an ionic liquid causes accumulation of
their counterions, which are neutralized at the needle or cap-
illary electrode and may either react with this electrode or
stay in solution; see Ref. �19� for a recent review of the
electrochemistry of electrosprays. These processes drasti-
cally limit the lifetime of the source by degrading the elec-
trode or the liquid. Lozano and Martínez-Sánchez �21�
showed that the electrochemical reactions of the nonex-
tracted species can be avoided through alternation of the ap-
plied voltage with a frequency dictated by the charging time
of the double layer generated at the liquid-metal interface.
The minimum required frequency depends on the electro-
chemical window of the liquid �20�, but typically is in the
range of 1 Hz. The dynamic response of the meniscus, which
has to reform two times per cycle, is much faster �22�. Ion
beams generated by this means are bipolar, containing posi-
tive and negative ions, which would not be possible with
LMISs �limited to positive ions� and is very useful in appli-
cations like electric propulsion, where nonextracted counte-
rions represent a loss of propulsive mass, and others where
accumulation of charge is not admissible.

In this paper, an order-of-magnitude analysis is used to
estimate the effects of the space charge and the mass flux
accompanying ion evaporation on the dynamics of the me-
niscus and the distribution of electric current in the purely
ionic regime of an ILIS. Both effects are found to be small. A
simplified model of the flow in the meniscus is proposed in
which these effects and the effect of the inertia of the liquid
are omitted. In addition, the capillary or needle configuration
of a real source is replaced by a parallel plate configuration,
in order to simplify the numerical treatment of the math-
ematical problem, and the details of the flow feeding the
meniscus are lumped into an effective pressure drop coeffi-
cient. Because of these and other simplifications discussed
below, the model cannot describe a real ILIS, but it still
provides qualitative information on key issues such as the
role of the finite electrical conductivity of the liquid in con-
trolling the emitted current, the size and shape of the ion-
emitting surface, the existence of a starting voltage, and the
dependence of the current-voltage characteristic and the
maximum attainable current on the feeding pressure and the
hydraulic resistance of the effective feeding line.

II. MODEL SETUP

A. Ion evaporation

Evaporation of ions from the charged surface of a nonme-
tallic liquid in which the ions are dissolved is a process first
described by Iribarne and Thomson �23� which presents itself
in a variety of applications. A certain amount of energy is
required to bring a �possibly solvated� ion from the liquid to
a large distance away from its surface. This energy is used to
form a new surface and to overcome the electrostatic attrac-
tion of the image charge left behind by the evaporating ion.
In the absence of an external electric field, the required en-
ergy is large compared with the thermal energy of the ions in
the liquid, so that the rate of ion evaporation is very small.
An external field decreases the electrostatic barrier for ions
of the appropriate polarity, and may increase their evapora-
tion rate to appreciable values.

The rate of ion evaporation �electric charge crossing the
surface per unit area and time� is �23�

je =
kT

h
� exp�−

E
kT
� , �1�

where h and k are the Planck and Boltzmann constants, T is
the temperature of the liquid, � is the density of free charge
at its surface, and E is the activation energy of the evapora-
tion process. This activation energy has been determined us-
ing a variety of approximations �23–27�. For a very polar
liquid with a surface of small curvature, the activation energy
can be written in the form �24�

E = �G − G�En� with G�En� = � e3En

4��0
�1/2

, �2�

where �G is the solvation energy of the ions, En is the ex-
ternal field normal to the surface, and e and �0 are the el-
ementary charge and the permittivity of vacuum.

The values of the surface field at which ion evaporation
occurs are typically large compared to ED= ��n0kT /�0�1/2,
which is the order of the maximum surface field for which
ions of both polarities still coexist in the Debye layer at the
liquid surface with number densities of the order of their
value n0 in the bulk of the liquid �28�. Here � is the dielectric
constant of the liquid. When En is large compared to ED, the
non-neutral layer responsible for the surface charge includes
a sublayer of characteristic thickness �kT /eEn where positive
ions accumulate with a density of order n0�En /ED�2.

B. Orders of magnitude

Values of the solvation energy of the ionic liquids and
solutions of interest for electric propulsion have not been
accurately determined but are expected to be in the range
�G�1.4–2 eV or above �29�, leading to �G /kT=54–78 or
higher at room temperature. These high values make the ex-
ponent in �1� very large and render ion evaporation negli-
gible in the absence of an electric field.

To estimate the order of the electric field needed at the
surface of the liquid for ion evaporation to play a role in the
transfer of electric charge, consider first the electrostatic con-
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dition �0�En−�En
l �=� at the surface of the liquid �see, e.g.,

Refs. �30,31��, which links the density of free surface charge
with the components of the electric field normal to the sur-
face outside and inside the liquid �En and En

l respectively�.
The latter field is negligible in equilibrium in the absence of
evaporation, when the surface charge attains its maximum
value �0En and screens the liquid from the external field. On
the other hand, the maximum value of the normal component
of the internal field is En

l =En /�, which is attained in the
absence of free surface charge. The internal field �El in what
follows� induces a conduction current in the liquid which
will be assumed to obey Ohm’s law with a constant conduc-
tivity K, though this assumption is not without limitations
in the conditions of an ion source; see Ref. �4� for criticism
and a more accurate modeling of the electrical conduction,
and also the comments at the end of this section. Using
Ohm’s law as an approximation, the electric current density
is j=KEl, whose component normal to the surface is jc
=KEn

l . The condition for the ion evaporation current to play
a role is je� jcmax

, with je given by �1� and jcmax
=KEn /�.

When ���0En and En
l �En /�, this order-of-magnitude con-

dition amounts to

kT

h
�0En exp�−

�G − G�En�
kT

� � K
En

�
�3�

or

G�En� � �G˜ with �G˜ = �G + kT ln
K/�0�

kT/h
.

At room temperature �G˜ is in the range 1.2–1.8 eV for K
=1 S /m and �=64.92, which are values typical of solutions
of some ionic liquids in propylene carbonate. This leads to
En�1–2 V /nm.

In an ILIS, high fields of this order are attained around the
tip of the meniscus, whose shape is determined by the bal-
ance of surface tension and electric stresses. The normal
electric stress acting on an equipotential liquid surface is
1
2�0En

2 �see �9a� and �9b� below for a more general expres-
sion�. The normal stress due to the surface tension is � /rv,
where � is the surface tension of the liquid and 1 /rv is twice
the mean curvature of its surface. The balance of these
stresses gives rv�2� /�0En

2 for the characteristic size of the
region around the tip of the meniscus where ion evaporation
occurs, which is of the order of 10 nm for a liquid with
the surface tension of propylene carbonate ��=4.19
�10−2 N /m� and the value of En estimated above.

The characteristic evaporation current can now be esti-
mated as Ie�2�jerv

2 =8��2K / ��0
2En

3�, where je�KEn /� ac-
cording to the balance leading to �3� and the estimate of rv
above has been used. This current is of the order of 10 nA,
which is small compared with the currents measured for the
most promising solutions of ionic liquids �17,18�, in the
range of hundreds of nanoamperes. As possible causes of the
discrepancy, Fernández de la Mora �42� points out that the
solvation energy could be smaller than assumed above,
which would lead to a lower En and a higher Ie, and that the
electrical conductivity could be larger than assumed owing to
the increase of the liquid temperature by Joule dissipation.

The first possibility is consistent with some results of Ref.
�29�. The order of the temperature increment due to Joule
dissipation can be estimated from the thermal energy balance
��2T+ j ·El=0, where � is the thermal conductivity of the
liquid and j ·El��Ie /rv

2��En /��. This gives �T� IeEn /��,
which is of the order of a few kelvins for a liquid with
the thermal conductivity of propylene carbonate ��
=0.16 W /m K� and a current of 10 nA, but increases pro-
portionally to the current and may rise to tens or even hun-
dreds of kelvins for the highest currents measured experi-
mentally, thereby having a noticeable effect on the electrical
conductivity of the liquid in such cases.

The mass flux accompanying ion evaporation is �m /q�je,
where m and q are the mass and charge of the evaporating
ions. If liquid is continuously supplied to the meniscus to
make for the loss of ions by evaporation and the proportional
loss of counterions to the electrode, then the velocity induced
in the meniscus to transport the evaporating ions to the sur-
face is vv��m /q�je / �	c0�, where 	 is the density of the liq-
uid and c0 is the concentration �in mass� of the ions dissoci-
ated in the liquid. This velocity is of the order of 3.5
�10−2 m /s for m /q=200 daltons, c0=O�1�, and 	=1.2
�103 kg /m3, which are typical of not-very-diluted solutions
of ionic liquids in propylene carbonate.

On the other hand, the velocity vc of the flow induced in
a dynamic meniscus by the surface tension and electric
stresses acting on its surface can be estimated from the order-
of-magnitude balance of these stresses and viscous stresses:

vc /rv�� /rv, which gives vc�� /
, of the order of 15 m/s
for propylene carbonate �
=2.76�10−3 kg /m s�. It has
been assumed here that the effect of the inertia of the liquid
is negligible, which is justified by the small value of the
Reynolds number 	vcrv /
, of the order of 0.03. The velocity
vc is large compared with vv, implying that the flow induced
in the liquid by ion evaporation does not play an important
role in the dynamics of the meniscus.

The exponential factor in �1� is a rapidly increasing func-
tion of the electric field. However, the evaporation current
cannot increase so rapidly, being limited by the rate at which
conduction in the liquid can bring ions to the surface. As a
consequence, the density of surface charge � in �1� must
decrease very rapidly when the electric field increases, and it
becomes very small in the region of the surface where ion
evaporation is controlled by conduction.

This controlling mechanism is specific of ionic liquids
and other electrolytic solutions whose electrical conductivity
is small compared to that of liquid metals. At the much
higher conductivities of the liquid metals, ion evaporation is
controlled by the space charge surrounding the evaporating
surface. Denoting by nsc�x� the number density of evaporated
ions in this region, the electric field satisfies � ·E=qnsc /�0.
The condition for the field induced by the space charge to be
of the order of the external field, in order to effectively re-
duce the field at the surface, is En /rv�qnsc /�0, where En and
rv are the characteristic field and size and the evaporation
region estimated above. On the other hand, the characteristic
velocity of the evaporated ions is vsc��qEnrv /m�1/2, from
the energy conservation condition mvsc

2 �qEnrv. The electric
current is then of order qnscvscrv

2 ��0�Enrv�3/2 / �m /q�1/2. This
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current is of the order of microamperes, which is typical of
LMISs but large compared with the current Ie estimated
above for an ILIS on the basis of liquid conduction control.
As a consequence, the density of space charge around the
evaporating surface of an ILIS is only of order Ie /qvscrv

2,
which is too small to appreciably reduce the field at the sur-
face below the field computed in the absence of space
charge.

In summary, the order-of-magnitude estimates worked out
in this section suggest that the flow in the meniscus of an
ILIS is dominated by the viscosity of the liquid and is little
affected by the mass flux accompanying ion evaporation, and
that the effect of the space charge around the evaporating
surface is negligible, with the evaporation current being con-
trolled by the finite electrical conductivity of the liquid.

It may be worth mentioning that a different order-of-
magnitude analysis for LMISs gives results quite different
from these. The ion current of a LMIS is limited by the space
charge rather than by the finite electrical conductivity of the
liquid, and the viscosity of the liquid plays only a secondary
role in the dynamics of the meniscus; see, e.g., Ref. �32�.

The estimates of this section and the analysis that follows
in the rest of the paper are for the purely ionic regime. This
is not the only possible regime of operation of an ILIS; there
is also a mixed regime of drops and ions mentioned in the
introduction, in which the meniscus takes a conical shape
and ejects a narrow jet. The two regimes, and perhaps a third
pulsating regime, might coexist in some regions of the pa-
rameter space of the problem, leading to multiplicity, but this
possibility will not be analyzed here.

Another complexity of ILISs comes from the presence
and evaporation of neutral species. The rate of evaporation of
neutral species depends on the nature and temperature of the
liquid, and may range from very high values for salts dis-
solved in relatively volatile solvents such as formamide, to
very low values for pure ionic liquids. The estimates above
suggest that the flow induced in the meniscus by the trans-
port of solvent is weak and can be neglected together with
the flow induced by the evaporation of the ions, except for
very dilute solutions, for which the issues of evaporation
and/or dripping of the solvent come to the front and require
a separate analysis. In any case, the different rates of evapo-
ration of the neutral species and the ions, together with the
electrochemical processes occurring at the electrode �if they
are not suppressed by voltage alternation�, cause slow
changes of the composition and properties of the liquid that
affect the operation of the source in the long term. These
processes also bring in diffusion. Simple estimates �see, e.g.,
Ref. �28�� suggest that, if ambipolar diffusion alone were to
account for the ion evaporation flux, the concentration of
ions would have large spatial variations in the meniscus and
the conduction-controlled density of current KEn /� would be
reduced by a factor of order �kT /eEnrv. Ohm’s law would
not be applicable in these conditions. However, even a mod-
est rate of evaporation of the solvent may cause a high-
Péclet-number flow that transports salt to the surface more
rapidly than diffusion. It suffices for this that the character-
istic velocity of such flow be large compared to Da /rv, where
Da is the coefficient of diffusion of the ions in the liquid.
Voltage alternation, on the other hand, may prevent the con-

tinuous depletion of ions of a given polarity in the vicinity of
the liquid surface. The slow changes of the liquid properties
with time do not invalidate the analysis that follows; they
simply make the parameters of the model depend on the
history of the source. Diffusion and spatial variations of ion
concentration will be neglected, and the electrical conductiv-
ity of the liquid will be taken to be uniform.

C. Formulation

Attention is confined here to the flow and the electric
current in a meniscus undergoing ion evaporation. On the
basis of the preceding estimates, a simple model is proposed
that largely isolates the analysis of the meniscus from the
complexities of the flow in the capillary or the grooves at the
roughened surface of the needle of an ILIS. This latter flow
plays an important role in the operation of a source and has
been analyzed both for LMISs �33� and for ILISs �22�, where
its complexity is exacerbated by the electrochemical reac-
tions of the counterions at the metallic surface, but it will not
be discussed in detail here.

In our model �see Fig. 1�, a given volume of a liquid of
constant viscosity 
, surface tension �, electrical conductiv-
ity K, and dielectric constant � lies on a metallic plate held in
a vacuum. A uniform electric field E� exists far from the
liquid due to a high voltage applied between the plate an
another distant parallel electrode. The wetted region of the
plate is a circle of radius a, a condition that can be realized if
the meniscus is attached to the edge of an orifice or crevice
of radius a drilled in the plate. A plate, rather than the needle
or capillary used in a real ILIS to intensify the electric field,
is assumed here merely to simplify the description of the far
electric field.

The motion of the liquid in the meniscus is driven by the
surface tension and electric stresses acting on its surface. The
components of the electric stress normal and tangent to the
surface are given by Eqs. �9a� and �9b� below. The inertia of
the liquid and the mass flux across its surface are neglected,
so that the flow obeys the Stokes equations, which express
the balance of pressure and viscous forces, and the surface of
the liquid is a material surface.

The electric fields in the liquid and in the vacuum are of
the form El=−��l and E=−��, where �l and � are the
electric potentials. Since the effect of the space charge can be
neglected and there is no free charge in the bulk of the liquid,
these potentials satisfy Laplace’s equation �in the liquid
this result follows from the charge conservation condition

�
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FIG. 1. �Color online� Definition sketch.
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� · j=0 with the current density given by Ohm’s law j=KEl

with constant K�. Boundary conditions for the electric poten-
tials are �l=�=0 at the metallic plate, the condition that the
electric field tends to E� far from the plate, and the electro-
static conditions �l=� and �0�En−�En

l �=� at the surface of
the liquid �30�. Here, as in Sec. II B, the subscript n denotes
the component of the field normal to the surface and � is the
density of free surface charge.

The density of free surface charge satisfies the transport
equation D� /Dt=�n ·�v ·n+KEn

l − je at the surface, which
expresses that the surface charge is convected by the flow
and the rate of change of the charge of a material element of
the surface is equal to the rate at which conduction brings
charge to the surface minus the rate at which the charge
evaporates. Here D� /Dt=�� /�t+v ·�� is the material de-
rivative at the surface, v is the velocity of the liquid, n is the
unit normal to the surface pointing away from the liquid, and
the first term on the right-hand side of the transport equation
is the effect of the surface strain; see, e.g., Ref. �34�.

In what follows distances are scaled with the radius of the
contact line a, velocities with the viscous-capillary velocity
vc=� /
, and electric fields with Ec= �� /�0a�1/2, so that

vc /a, Eca, and �0Ec are used as the scales of pressure,
electric potential, and surface charge density, respectively.
The surface of the meniscus, which must be determined as
part of the solution, is denoted by f�x , t�=0, with f�x , t�
0
in the liquid. Here x= �x ,r�, where x and r are the distances
to the plate and to the symmetry axis scaled with a, and t is
time scaled with a /vc.

The governing equations and boundary conditions take
the following dimensionless form:

� · v = 0, �4a�

0 = − �p + �2v , �4b�

�2�l = 0 �4c�

in the liquid, for f�x , t�
0;

�2� = 0 �5�

in the vacuum, for f�x , t��0;

n · � · n + � · n = �n
e , �6a�

t · � · n = �t
e, �6b�

Df

Dt
= 0, �6c�

En − �En
l = � , �6d�

� = �l, �6e�

D�

Dt
= �n · �v · n + �En

l − D� exp��En
1/2� �6f�

at the surface f�x , t�=0;

v = 0, �7a�

� = �l = 0 �7b�

at the plate, x=0; and

�� = − Bi �8�

far from the plate.
Here n and t are unit vectors normal and tangent to the

surface of the liquid; �=−pI+��, where p is the dimension-
less pressure of the liquid, I is the unit tensor, and �� is the
dimensionless viscous stress tensor; �n

e and �t
e are the dimen-

sionless components of the electric stress normal and tangent
to the surface, given by �Landau and Lifshitz �30�, Saville
�31��

�n
e =

1

2
�En

2 − �En
l2� +

1

2
�� − 1�Et

2, �9a�

�t
e = �Et, �9b�

where En=E ·n, Et=E · t, and similarly for El; and x and i are
the distance to the solid plate and a unit vector normal to the
plate. The solution of the problem depends on the six dimen-
sionless parameters

� =

aK

�0�
, �, B =

E�

Ec
, V =

V

a3 ,

D =

akT

�h
exp�−

�G

kT
�, � =

1

kT
� e3Ec

4��0
�1/2

, �10�

where V is the volume of the meniscus, which is to be given
as an initial condition and is conserved in its time evolution.

A stationary solution is found to exist only when B is of
order unity �see Sec. III A below�. The dimensionless vol-
ume V is also taken to be of order unity, whereas � is large
for the liquids of interest. The values of the dimensionless
conductivity � and of � depend on a. For a liquid with the
typical values of the physical properties used in the estimates
of Sec. II B, it is ��106 and ��4 when a=100 
m, which
is typical of a meniscus at the end of a capillary, and �
�100 and ��40 when a=10 nm, which might be used to
simulate the evaporation region of the surface alone. Finally,
real values of D are very small and such that the last two
terms of �6f� are of the same order in the evaporation region
�cf. the estimates of Sec. II B�. Here, to make the numerical
problem affordable, the values of � used in the computations
are somewhat smaller than for a real source, and D is in-
creased accordingly to keep the order of the ion evaporation
term in �6f� unchanged.

Axisymmetric solutions of the problem �4�–�9� have been
computed using standard boundary element methods to solve
the Laplace and Stokes equations �4a�–�4c� and �5� and a
second-order Runge-Kutta method to advance the evolution
equations �6c� and �6f�.
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III. RESULTS AND DISCUSSION

A. Constant-volume menisci

Stationary solutions of �4�–�9� for very polar liquids
���1� are nearly hydrostatic irrespective of the intensity of
ion evaporation, determined by D and the dimensionless
strength of the applied field B. This is because condition �6d�
implies that En

l �En for any � between zero and its equilib-
rium value �eq=En. Since the solution of Laplace’s Eq. �4c�
implies that Et�En

l , the electric field does not enter the liq-
uid, and the electric shear �9b� is small compared with the
normal electric stress �9a�, which can be approximated by
�n

e = 1
2En

2. This normal stress can be balanced by pressure and
surface tension stresses, leaving the liquid at rest in first ap-
proximation. Hydrostatic solutions with �=�eq �El=0� and
�=0 have been computed by Taylor �35�, Miksis �36�, and
Wohlhuter and Basaran �37�, among others; see references in
the last paper. Ion evaporation reduces the density of surface
charge below its equilibrium value, making 0
�
�eq, but
this induces only a weak motion in the liquid when � is large.

Figure 2 illustrates this result. The density of surface
charge around the tip of the meniscus decreases when D
increases, and ion evaporation approaches the conduction-
controlled regime discussed in Sec. II B for the largest value
of D shown. The shape of the meniscus, however, changes
little with D and nearly coincides with the hydrostatic solu-
tion �for D=0�.

The length of the meniscus is shown in Fig. 3 as a func-
tion of the applied field for different values of the dimension-
less volume of liquid. In line with the hydrostatic solutions
of Ref. �37�, the elongation of the meniscus increases with

the applied field and reaches a maximum for a certain value
of the field above which no stationary solution exists. The
maximum value of the applied field decreases when the vol-
ume of liquid increases. The shape of the meniscus for this
maximum field is given in Fig. 4 for various volumes of
liquid. As can be seen, the meniscus stays smooth at its
maximum elongation. The electric field at the surface and the
rate of ion evaporation �not displayed� reach their maxima at
the tip of the meniscus, but the region of the surface where
the electric field is of the order of its maximum value is
never small compared with the size of the meniscus. For
small volumes of liquid, the meridional section of the menis-
cus becomes convex toward the liquid in a region around the
contact line when the applied field is increased. The angle of
the surface to the plate becomes zero for a certain value of
the field, above which the surface of the liquid extends to the
region x
0. These solutions are meaningless for a meniscus
attached to a smooth solid surface �though they can be real-
ized at the end of a capillary� and have not been computed.
The lowest curve in Fig. 3, for V=0.5, ends at the value of B
for which the surface of the liquid becomes tangent to the
plate. The innermost curve in Fig. 4 is a meridional section
of this surface.

These results may have a bearing on the observed differ-
ences between the emissions of capillary and externally wet-
ted needle types of sources. In the former type of source the
radius of the capillary �analogous to a� tends to be very large
compared to the size of the evaporation region estimated in
Sec. II B, which according to these results prevents the cap-
illary sources from operating in the purely ionic regime. The
sources may still work in the mixed �ions plus drops� regime
because the high flow rate accompanying the emission of
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FIG. 2. Distributions of free surface charge �a� and shapes of the
meniscus �b� for �=10 000, �=50, B=0.65, V=1.5, �=10, and the
three values D=0, 10−4, and 10−3, increasing as indicated by the
arrows.
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0

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2 1.6
x

r

FIG. 4. Limiting shape of the meniscus for �=10 000, �=50,
D=10−3, �=10, and V=0.5, 1, 1.5, 2, 2.5, and 3, increasing as
indicated by the arrow.

F. J. HIGUERA PHYSICAL REVIEW E 77, 026308 �2008�

026308-6



drops allows the meniscus to become a cone-jet �4�, confin-
ing the region of high surface field and ion evaporation to a
close vicinity of the apparent apex of the cone.

If the characteristic size rv of the ion evaporation region is
in the range of tens of nanometers, as in the estimates of Sec.
II B, then the result that in the purely ionic regime the mini-
mum radius of curvature of the surface cannot be much
smaller than the size of the meniscus also poses a strong
limitation for externally wetted needle sources to work in
this regime. The limitation becomes less strong if the solva-
tion energy is smaller than assumed in Sec. II B �a possibility
already mentioned in connection with the estimate of the
electric current�, because then the electric field needed at the
surface to have ion evaporation is smaller than in Sec. II B
and rv is larger. A conceivable possibility for very dilute
solutions of ionic liquids in very volatile solvents, for which
vv may be much larger than estimated in Sec. II B, is that the
flow induced by ion and solvent evaporation might affect the
shape of the meniscus and lead to a stationary but not hydro-
static tip somewhat sharper than in the computations of this
section. This case is not covered by the present analysis. The
effect of the evaporation-induced flow on the shape and sta-
bility of the meniscus has been discussed in the literature for
LMISs; see, e.g., Ref. �32�.

The hydrostatic results of Wohlhuter and Basaran �37�
strongly suggest that there is a second branch of stationary
solutions above the turning point shown in Fig. 3 for various
volumes of liquid. At the high values of � of interest here,
this second branch should end in a pointed meniscus shortly
beyond the turning point. Solutions of the second branch are
unstable, if they exist, and therefore cannot be computed
with the time-marching numerical method used here or real-
ized in a stationary source.

The electric field and the density of surface charge at the
tip of the meniscus are shown in Fig. 5 as functions of the
applied field B. The electric field at the tip, which is the
maximum field on the surface of the liquid, increases with B
and with the volume of liquid at constant B. The density of
surface charge follows the same trends for moderate values
of B, but it reaches a maximum at a certain B and decreases
when B is further increased. The value of B at which the
maximum is attained decreases when the volume of liquid
increases, but the maximum value of � at the tip does not
depend on the volume. It decreases when D in �6f� increases
�see Fig. 2�a�� and increases with the dimensionless conduc-
tivity �. The density of surface charge may become very
small before the meniscus reaches its maximum elongation
�curves for V=1 and 1.5 in Fig. 5�b��, which is the mark of
conduction-controlled ion evaporation. This regime is not at-
tained for small volumes �e.g., the curve for V=0.5 in Fig.
5�b�� because the surface of the meniscus becomes tangent to
the plate before the applied field can be increased to suffi-
ciently high values.

B. Ion evaporation current

Figure 6 shows the dimensionless ion evaporation current,
which is the integral of je over the surface of the meniscus
scaled with �0Ec�a /
. The current is very small for moder-

ate values of the applied field B and increases nearly linearly
with B in a region of larger values of this parameter, in which
the current also increases with the electrical conductivity of
the liquid �� in dimensionless variables�. The transition be-
tween the two regions is already sharp for the value �=10
used in the computations, and becomes sharper when � in-
creases, though the numerical problem becomes then stiffer.
This transition is consistent with the notion of a starting volt-
age found in experiments with both LMISs �1� and ILISs
�15�, but it is not connected here with the formation of a
conical meniscus. A conical meniscus and emission of drops
will probably appear when B increases above its value at the
end point of each curve in Fig. 6, which mark the upper
boundary of the purely ionic regime. A nearly linear current-
voltage characteristic in a bounded range of voltages �here of
B� is found in experiments with ILISs �15� and will be dis-
cussed below. It also occurs for LMISs, where it has been

0

1

2

3

0 0.4 0.8 1.2

0

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2

σtip

(b)

(a)

Etip

B

B
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explained taking into account the effect of the space charge
�38–41�.

The mass flux accompanying ion evaporation, whose ef-
fect has been left out of the formulation, is proportional to
the electric current. If the mass flux could be directly con-
trolled, as in a regular electrospray �4�, then the results of
Fig. 6 would predict that the volume of the meniscus in-
creases with the mass flux at constant voltage �constant B�
and decreases when the voltage is increased at constant mass
flux, which are well-known trends for the meniscus of an
electrospray.

The results of Fig. 6 reflect the high sensitivity of the
evaporation rate to the electric field. Ion evaporation is neg-
ligible in the nearly frozen regime of low B and becomes
independent of the kinetics �of D and �� on most of the
evaporating surface in the conduction-controlled regime of
high B. A crossover electric field may be defined for which
the last two terms of �6f�, representing conduction of electric
current from the liquid to the surface and ion evaporation,
are equal to each other with �En

l =�, so that the surface
charge and the electric displacement in the liquid are equally
important in �6d�. The crossover field is

E0 = � 1

�
ln

�

�D
�2

. �11�

When ��1, the ion evaporation term is exponentially
small in the region of the surface where En
E0, and the
density of surface charge is exponentially small in the region
where En�E0. In addition En

l �0 ���En� in the former re-
gion, because the motion of the liquid is very weak in a
stationary meniscus and conduction has plenty of time to
accumulate electric charge at the surface and screen the liq-
uid from the outer field. The stationary solution of �4�–�9�
has therefore a simple asymptotic structure for large values
of � and �. The liquid is at rest and its surface is an equipo-
tential of the outer electric field ��=0�. The shape of the
meniscus is independent of ion evaporation. The electric
field in the liquid is small, of O�1 /��, and is given by the
solution of �4c� with the conditions En

l =0 in the region of the
surface where En
E0 and En

l =En /� in the region where En
�E0. The ion evaporation current coincides with the current
reaching the latter region of the surface by conduction in the
liquid.

The distributions of density of surface charge and of den-
sity of evaporation current normalized with its value at the
tip are shown in Fig. 7 for �=50, �=10, and various values
of the applied field B. The maximum density of surface
charge is nearly independent of the applied field and is not
far from half of the value of the crossover field �E0�1.49 for
the values of the parameters used in these computations�,
which is in agreement with the qualitative asymptotic de-
scription; see also Fig. 5�b� above. The normalized distribu-
tions of density of evaporation current depend little on B
because the shape of the meniscus changes little with this
parameter. This, together with the nearly linear variation of
the field at the tip with B �Fig. 5�a��, explains the nearly
linear variation of the current in Fig. 6.

C. Force and feeding flow

The force exerted by the liquid on the metallic plate,
scaled with �a, is

F = 2�	
0

1 �i · � · i +
1

2
�El2�r dr , �12�

where the first term includes the pressure and viscous
stresses and the second term is the Maxwell electric stress,
which is small when � is large. This force is shown in Fig. 8
�solid contours� as a function of the applied field and the
volume of the meniscus, B and V. As was seen before, sta-
tionary solutions exist only in a certain region of the B-V
plane. For a given V, the range of possible B extends from
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zero to the value at the turning point in Fig. 3 �upper bound-
ary, dash-dotted line, in Fig. 8� or to the value for which the
surface of the liquid becomes tangent to the plate �lower
boundary, dotted line, in Fig. 8�. The force F is negative
�toward the plate� in most of this region, and one solution or
two solutions with different volumes exist for given values
of F and B. The dashed curves in Fig. 8 are contours of
constant electric current, which increases on approaching the
right-hand side boundary of the region of existence of sta-
tionary solutions.

Solutions of �4�–�9� have been computed up to this point
for given values of the volume of liquid, but this volume is
not known from the outset in an ILIS. A more realistic con-
dition, though still short of a detailed analysis of the feeding
flow in the capillary or around the needle of an ILIS, can be
obtained modeling this flow by a pressure drop proportional
to the flow rate entering the meniscus �33�:

p0 + F = �Q , �13�

where Q is the flow rate, p0 is the pressure of the liquid in a
reservoir upstream of the meniscus, the mean pressure at the
base of the meniscus is taken as −F computed from �12�, and
� is a proportionality constant.

Estimates for a drag-free �roughened needle surface�
LMIS suggest that the capillary depression in the grooves of
the needle could deliver a flow rate to the meniscus much
higher than that needed for ion evaporation �40�. In these
conditions, the latter flow rate can be omitted from the right-
hand side of �13�, leaving only the flow rate required to
change the volume of the meniscus in a transient, Q
=dV /dt. This flow rate is zero for a stationary solution, for
which �13� reduces to the constant-pressure condition

F = − p0. �14�

Transient solutions have been computed by replacing the
constant-volume condition �7a� by �13� with Q=dV /dt; i.e.,
setting v=�−1�p0+F�v0�r�i at the plate instead of �7a�. Here
v0=0 for r�1 and 2�
0

1v0r dr=1, while results obtained for
different functions v0�r� that satisfy these conditions are very
similar. Transient solutions for given values of B and p0, with
�=O�1�, tend to the lower stationary solution of Fig. 8 with
F=−p0. The lower branch of Fig. 8 is therefore stable and
the upper branch is unstable when it exists. This result is an
extension to electrified menisci of a well-known result for
attached drops subject to surface tension forces only. It may
be worth noting, however, that some solutions of the upper
branch seem to be stabilized, and some solutions of the lower
branch destabilized, when �13� is replaced by �14�; i.e., when
F=−p0 during the transient, which is the limiting form of
�13� for �→0.

The electric current and the volume of the meniscus for
stationary solutions with p0=2 and p0=5 are shown as func-
tions of the applied electric field by the solid curves in Fig. 9.
These solutions lie on the lower branch of the contours F
=−p0 in Fig. 8. The electric current can only reach moderate
values when p0=5 because the applied field cannot increase
beyond the turning point in this figure. The region of high

current on the right-hand side in Fig. 8 is accessible only to
solutions with low values of the feeding pressure p0, which
have small menisci.

This situation may change when the pressure drop in-
duced in the feeding line by the flow rate that accompanies
evaporation is taken into account, as was done by Mair �41�
for a LMIS and by Lozano and Martínez-Sánchez �22� in
their discussion of the flow around the externally wetted
needle of an ILIS. The direct effect of this flow rate on the
meniscus has been left out of the formulation of Sec. II C,
but the value of the flow rate can be easily computed, being
proportional to the evaporation current Ie, and included on
the right hand side of �13�. The boundary condition at the
plate is then modified to v=�−1�p0+F− �̂Ie�v0�r�i, so that
F− �̂Ie=−p0 in the final stationary state. Here �̂ is a dimen-
sionless measure of the hydraulic resistance of the needle,
whose value should be determined by an analysis of the flow
feeding the meniscus. Two sample solutions for p0=5 and
different values of �̂ are given by the dashed and dotted
curves in Fig. 9. The decrease of the slope of the Ie-B char-
acteristic displayed by these curves with increasing �̂ is con-
sistent with observed differences between the characteristics
of drag-free LMISs and sources with non-roughened emitters
�38,39�. The path of the solution in the B-V plane in Fig. 8
depends on �̂. Appropriate combinations of values of this
parameter and p0 allow the path to approach the region of
high electric current. These results confirm the important ef-
fect of the mechanism used to feed the meniscus on the char-
acteristic of an ILIS.
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D. Dynamic response to voltage alternation

Low-frequency alternation of the voltage between posi-
tive and negative values is required in an ILIS to avoid the
electrochemical decomposition of the liquid at the surface of
the emitter �15�. This makes the flow and the emitted current
time periodic, but the stationary solutions discussed above
are still applicable during most of the period because the
response time of the source to a change of the voltage is
short compared with the time between successive changes.
Focusing on this transient response, Lozano and Martínez-
Sánchez �22� observed a delay of the ion current onset rela-
tive to the nearly square-shaped �switch time of about
200 
s� voltage signal applied to their sources, with a char-
acteristic current overshoot often following the current delay
�22,33�. They measured the delay as a function of the posi-
tive and negative voltages and the alternation frequency, and
qualitatively explained their results in terms of the flow in-
duced by surface tension and electric stresses in the grooves
on the roughened surface of the needle and in the smooth
convex surface around its tip.

As a preliminary attempt to examine the role played by
the meniscus in this transient response, Eqs. �4�–�9� have
been solved for a given value of B using as initial condition
the stationary solution for a different B of opposite sign. The
other parameters in �10� are left constant in these computa-
tions, though V and D could also take different values in
each of the two parts of the voltage alternation cycle. The
factor � in the last term of �6f� is changed to max��B ,0� /B
because ion evaporation should occur only when the surface
charge and the electric field have the same sign.

Figure 10 shows the time evolution of the current for a
sample computation in which B is abruptly changed from
−0.8 to 0.6 at t=0. For a typical solution of an ionic liquid in
propylene carbonate, the value �=500 used in this compu-
tation corresponds to a tiny meniscus with a=0.05 
m. The
numerical results display a short delay and a small overshoot
of the current, but these features cannot correspond to the
experimental results of Ref. �22�. The delay �visible in the
inset of the figure� is due to the time required by conduction

to bring positive charge to the surface and evacuate the nega-
tive charge that was initially there. The characteristic time of
this process is the electric relaxation time of the liquid te
=�0� /K �� /� in dimensionless variables� �31�, or a time
even shorter than this in the conduction-controlled evapora-
tion regime, in which the dimensionless � is very small. The
time te is far too short compared with the voltage switch time
scale in the experiments of Lozano and Martínez-Sánchez
�22� for charge relaxation effects to account for the delay
reported by these authors.

The overshoot reflects the existence of another process
with a different characteristic time. The stationary meniscus
for B=0.6 is more rounded than the initial meniscus for B
=−0.8, but the characteristic time of adjustment of the sur-
face is the viscous capillary time tc=a /vc �equal to unity in
dimensionless variables�, which is large compared with the
electric relaxation time. In these conditions, conduction
brings positive charge and ion evaporation sets in at a surface
that is more elongated, and therefore causes a stronger inten-
sification of the field, than the final stationary surface. The
field at the surface and the electric current take therefore
large values that slowly decrease as the surface recedes in a
dimensionless time of O�1�. For the probable sizes of the
menisci in Ref. �22�, the viscous capillary time is only mar-
ginally shorter than the voltage switch time, but the over-
shoot in Fig. 10 becomes an undershoot �never observed in
Ref. �22�� when the initial shape of the meniscus is more
rounded than its final shape.

These negative results strongly suggest that the flow in
the grooves and the smooth surface of the needle, rather than
the meniscus, causes the observed response of the sources to
voltage alternation. This flow introduces larger characteristic
times in the dynamics �22,33�, but its analysis is beyond the
scope of the model �4�–�9�.

The numerical results of this section also illustrate a cer-
tain robustness of the meniscus. Although the numerical
computations have not been exhaustive, the meniscus was
never observed to disrupt or shed charged drops during the
transient, contrary to what could be expected for a cone-jet
subjected to similar voltage alternation.

IV. CONCLUSIONS

A qualitative model of the purely ionic regime of an ILIS
has been formulated. An order-of-magnitude analysis of the
flow and the electric field in the meniscus of the source sug-
gests that the effects of the space charge, the mass flow ac-
companying ion evaporation, and the inertia of the liquid are
small in this regime and can be neglected in first approxima-
tion. The ion evaporation current is limited by the finite con-
ductivity of the liquid rather than by the space charge around
its surface, in contrast to the case of a LMIS.

Using these results, the flow in the meniscus and the ion
evaporation current can be largely isolated from the com-
plexities of the flow around the needle or in the capillary of
the source. Stationary menisci of very polar liquids are found
to be nearly hydrostatic and to exist only for values of the
applied field below a certain maximum, at which the menis-
cus attains its maximum possible elongation but stays
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smooth. Owing to the high sensitivity of the ion evaporation
rate with the electric field, the current/applied field charac-
teristic displays a region of very weak ion evaporation for
values of the applied field below a certain starting field, and
a conduction-controlled region for higher values of the ap-
plied field. A qualitative description is given of the
asymptotic structure of the solution in the latter region.

The model of the meniscus, supplemented with a simpli-
fied treatment of the flow around the needle or in the capil-
lary as an effective feeding line, predicts that, for drag-free
sources �no pressure drop in the effective feeding line�, the

size of the meniscus decreases and the maximum attainable
current increases when the feeding pressure is decreased,
though the voltage required to extract this current increases.
Appropriate combinations of feeding pressure and pressure
drop may lead to high maximum currents.
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